
Multi-Parametric Toolbox 3.0

Martin Martin Martin Martin HercegHercegHercegHerceg

Manfred Manfred Manfred Manfred MorariMorariMorariMorari

ETH Zürich STU Bratislava EPFL Lausanne

Michal Michal Michal Michal KvasnicaKvasnicaKvasnicaKvasnica Colin N. JonesColin N. JonesColin N. JonesColin N. Jones

What is MPT?

� Matlab toolbox for application of explicit MPC

– high-speed implementation of MPC in real-time

� Approach

– offline: solve optimal control problem parametrically

– online: evaluate the resulting PWA feedback

plant

Over Over Over Over 30 000 downloads 30 000 downloads 30 000 downloads 30 000 downloads in 10 years!in 10 years!in 10 years!in 10 years!

Core Features of Version 3.0

� New engine for parametric optimization

– new parametric and non-parametric solvers

� Extended geometric library

– convex sets and function over sets

� More flexible MPC design

– modular structure, object oriented

� Novel algorithms for reduction of complexity

– separation, clipping, PWA fitting, …

Core Numerical Engines

� New parametric solver – PLCP

– relies on solving linear-complementarity problems (LCP) by
approach of Jones, Morari, CDC’06

– features lexicographic perturbations to improve robustness

� New nonparametric solver – LCP

– implements lexicographic Lemke’s algorithm

� Interfaces to state-of-the-art solvers

– CPLEX, GUROBI, NAG, CDD, GLPK, QPOASES, QPspline

problem = Opt(’f’, f, ’A’, A, ’b’, b)
solution = problem.solve

min���
�� � 	

Parametric Optimization

� Single solver for parametric linear and quadratic problems

optimality
conditions

LCP
formulation

optimality
conditions

Geometric Library – Basic Sets

� Extended support for polyhedra

– unbounded, lower-dimensional sets

– unions of polyhedra with certain properties

U = PolyUnion(’Set’, P, ’Convex’, 1, ’Overlaps’, 0)

P = Polyhedron(’A, A, ’b’, b, ’Ae’, Ae, ’be’, be)
Q = Polyhedron(’V’, V, ’R’, R)

Geometric Library – Operations

� Supported geometric operations

– Minkowski summations, Pontryagin differences, affine maps,
projections, set-differences, convex hulls, …

+ =

T = U \ S

S = P + Q

All algorithms built with MPT2 still work!All algorithms built with MPT2 still work!All algorithms built with MPT2 still work!All algorithms built with MPT2 still work!

\ =

Geometric Library – Extensions

� General convex sets

– import of YALMIP constraints as YSet objects

� Functions over sets

– represented compactly as PolyUnion objects

� �
 	�� � 			if			� ∈ ��			

�� �� �� ��

��
�� �� ��

����

�

x = sdpvar(2,1);
box = ([0;0.5] <= x <= [1; 2]);
circle = (2*norm(x-1) <= 1);
S = YSet(x, box + circle);

New MPC Setup

� Basic MPCController object

– represents constrained finite horizon optimal control problem

� Flexible interface for formulating control problems

– based on modularized code

– all controllers are derived from a common object

� Support for constrained linear and hybrid models

– LTI models, PWA models, and MLD models

min	�� ��� � ��� �
�

���s.t.:		��"�
	���� , ���
� ∈ $, � ∈ %

Versatility of LTI Models

� Autonomous system

� Affine autonomous system

� State update equation

� Output equation

��"�
 ���

��"�
 ��� � &��

model = LTISystem(’A’, A)

model = LTISystem(’A’, A, ’f’, f)

model = LTISystem(’A’, A, ’B’, B)

model = LTISystem(’A’, A, ’B’, B, ’C’, C)

��"�
 ��� � �

��"�
 ��� � &��, '�
 (��

Constraints

� Constraints

– lower/upper bounds on signals

– specific constraints can be added using the concept of filters
(blocking constraints, rate constraints, logical constraints, soft
constraints, …)

model.u.min = -1; model.u.max = 1;

)1 � � � 1

�� ∈ Ω, Ω
 �	 	�� � 	,
model.x.with(‘terminalSet’)

model.x.terminalSet = Polyhedron(A,b)

Performance Specifications

� Penalties on system signals

– additional penalties can be provided as filters, e.g. terminal
penalties, slew-rate penalization, tracking of references, …

model = mpt_import(sysStruct,probStruct)

model.x.penalty = QuadFunction(Q)����

model.x.penalty = OneNormFunction(Q)�� �

model.x.penalty = InfNormFunction(Q)�� -

MPT2 setups can be seamlessly imported!MPT2 setups can be seamlessly imported!MPT2 setups can be seamlessly imported!MPT2 setups can be seamlessly imported!

Generation of Explicit Solution

1. Construct the online MPC controller object

2. Tune the controller and close the loop

3. Export to the explicit form

ctrl = MPCController(model, N)
u = ctrl.evaluate(x)

expl_ctrl = ctrl.toExplicit()

loop = ClosedLoop(ctrl, model)
data = loop.simulate(x0, Nsim)

model

MPC

MPC

MPC

� �

��

Fine Tuning

� Tuning and refinement of MPC setups using YALMIP

– export to YALMIP

– adjust constraints and performance specification

– construct back the online MPC object

Y = ctrl.toYALMIP()

ctrl.fromYALMIP(Y)

Arbitrary Arbitrary Arbitrary Arbitrary adjustmetsadjustmetsadjustmetsadjustmets are possible!are possible!are possible!are possible!

MPC

variables

constraints

objective

MPC

Deployment of Explicit Controllers

� Export to low level programming language – code
generation

� Includes routines for high speed evaluation

– consecutive search

– binary search tree

� Test in Simulink and deploy on real-time platform

C code

expl_ctrl.exportToC()

2D Example

� Oscillator example

– CFTOC with horizon 5

– cost function

– feedback law

– partition

expl_ctrl.cost.fplot()

expl_ctrl.feedback.fplot()

expl_ctrl.partition.plot()

Summary

� MPT 3.0

– novel parametric optimization engine

– contains powerful library for computational geometry

– flexible MPC synthesis

– export to C code

� Documentation

� Support

– Feedback is welcome!

– Enquiries and suggestions mpt@control.ee.ethz.ch

http://control.ee.ethz.ch/~http://control.ee.ethz.ch/~http://control.ee.ethz.ch/~http://control.ee.ethz.ch/~mpt/3mpt/3mpt/3mpt/3

mptdoc

