Multi-Parametric Toolbox 3.0

Michal Kvasnica

Martin Herceg **Manfred Morari**

ETH Zürich

EPFL Lausanne

Colin N. Jones

What is MPT?

- Matlab toolbox for application of explicit MPC
 - high-speed implementation of MPC in real-time
- Approach
 - offline: solve optimal control problem parametrically
 - online: evaluate the resulting PWA feedback

Over 30 000 downloads in 10 years!

Core Features of Version 3.0

- New engine for parametric optimization
 - new parametric and non-parametric solvers
- Extended geometric library
 - convex sets and function over sets
- More flexible MPC design
 - modular structure, object oriented
- Novel algorithms for reduction of complexity
 - separation, clipping, PWA fitting, ...

Core Numerical Engines

- New parametric solver PLCP
 - relies on solving linear-complementarity problems (LCP) by approach of Jones, Morari, CDC'06
 - features lexicographic perturbations to improve robustness
- New nonparametric solver LCP
 - implements lexicographic Lemke's algorithm
- Interfaces to state-of-the-art solvers
 - CPLEX, GUROBI, NAG, CDD, GLPK, QPOASES, QPspline

Parametric Optimization

Single solver for parametric linear and quadratic problems

$$\min \frac{1}{2u^{T}Hu} + c^{T}u$$

$$Au \le b + E\xi, \ u \ge 0$$

$$Au \le b + E\xi, \ u \ge 0$$

$$\lambda^{T}(Au - b - E\xi) = 0, \ \nu^{T}u = 0$$

$$\downarrow \qquad LCP$$
formulation
$$w - Mz = q + G\xi$$

$$w \ge 0, \ z \ge 0$$

$$w^{T}z = 0$$

Geometric Library – Basic Sets

- Extended support for polyhedra
 - unbounded, lower-dimensional sets
 - P = Polyhedron('A, A, 'b', b, 'Ae', Ae, 'be', be)
 - Q = Polyhedron('V', V, 'R', R)


```
U = PolyUnion('Set', P, 'Convex', 1, 'Overlaps', 0)
```


Geometric Library – Operations

- Supported geometric operations
 - Minkowski summations, Pontryagin differences, affine maps, projections, set-differences, convex hulls, ...

Geometric Library – Extensions

General convex sets

- import of YALMIP constraints as **YSet** objects

```
x = sdpvar(2,1);
box = ( [0;0.5] <= x <= [1; 2] );
circle = ( 2*norm(x-1) <= 1 );
S = YSet(x, box + circle);
```


Functions over sets

- represented compactly as **PolyUnion** objects $f(x)
\uparrow f_{2} \qquad f_{3} \qquad f_{4} \qquad f(x) = f_{i}(x) \text{ if } x \in R_{i}$ $R_{1} \qquad R_{2} \qquad R_{3} \qquad R_{4} \qquad x$

New MPC Setup

- Basic MPCController object
 - represents constrained finite horizon optimal control problem

$$\min \sum_{i=0}^{N} (\|Qx_k\| + \|Ru_k\|)$$

s.t.: $x_{k+1} = f(x_k, u_k)$
 $x \in \mathcal{X}, u \in \mathcal{U}$

- Flexible interface for formulating control problems
 - based on modularized code
 - all controllers are derived from a common object
- Support for constrained linear and hybrid models
 - LTI models, PWA models, and MLD models

Versatility of LTI Models

• Autonomous system $x_{k+1} = Ax_k$

model = LTISystem('A', A)

• Affine autonomous system $x_{k+1} = Ax_k + f$

model = LTISystem('A', A, 'f', f)

• State update equation $x_{k+1} = Ax_k + Bu_k$

model = LTISystem('A', A, 'B', B)

• Output equation $x_{k+1} = Ax_k + Bu_k$, $y_k = Cx_k$

model = LTISystem('A', A, 'B', B, 'C', C)

Constraints

- Constraints
 - lower/upper bounds on signals

$$-1 \le u \le 1$$

model.u.min = -1; model.u.max = 1;

specific constraints can be added using the concept of filters
 (blocking constraints, rate constraints, logical constraints, soft constraints, ...)

$$x_N \in \Omega$$
, $\Omega = \{x \mid Ax \le b\}$

model.x.with(`terminalSet')
model.x.terminalSet = Polyhedron(A,b)

Performance Specifications

Penalties on system signals

$x^T Q x$	<pre>model.x.penalty = QuadFunction(Q)</pre>
$\ Qx\ _1$	<pre>model.x.penalty = OneNormFunction(Q)</pre>
$\ Qx\ _{\infty}$	<pre>model.x.penalty = InfNormFunction(Q)</pre>

 additional penalties can be provided as filters, e.g. terminal penalties, slew-rate penalization, tracking of references, ...

MPT2 setups can be seamlessly imported!

model = mpt_import(sysStruct,probStruct)

Generation of Explicit Solution

1. Construct the online MPC controller object

```
ctrl = MPCController(model, N)
u = ctrl.evaluate(x)
```

2. Tune the controller and close the loop

loop = ClosedLoop(ctrl, model)
data = loop.simulate(x0, Nsim)

3. Export to the explicit form

expl_ctrl = ctrl.toExplicit()

Fine Tuning

- Tuning and refinement of MPC setups using YALMIP
 - export to YALMIP

Y = ctrl.toYALMIP()

- adjust constraints and performance specification
- construct back the online MPC object

Deployment of Explicit Controllers

Export to low level programming language – code generation

expl_ctrl.exportToC()

- Includes routines for high speed evaluation
 - consecutive search
 - binary search tree

Test in Simulink and deploy on real-time platform

2D Example

- Oscillator example
 - CFTOC with horizon 5
 - cost function

expl_ctrl.cost.fplot()

feedback law

expl_ctrl.feedback.fplot()

– partition

expl_ctrl.partition.plot()

Summary

- MPT 3.0
 - novel parametric optimization engine
 - contains powerful library for computational geometry
 - flexible MPC synthesis
 - export to C code
- Documentation

mptdoc

- Support
 - Feedback is welcome!
 - Enquiries and suggestions mpt@control.ee.ethz.ch

http://control.ee.ethz.ch/~mpt/3

